Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Цикл трикарбоновых кислот (цикл Кребса)



 

Цикл трикарбоновых кислот был открыт в 1937 г. Г. Кребсом. В этой связи он получил название “цикл Кребса”. Данный процесс является цент-ральным путем метаболизма. Он происходит в клетках организмов, стоящих на разных ступенях эволюционного развития (микроорганизмы, растения, животные).

Исходным субстратом цикла трикарбоновых кислот является ацетил-коэнзим А. Этот метаболит представляет собой активную форму уксусной кислоты. Уксусная кислота выступает в качестве общего промежуточного продукта распада почти всех органических веществ, содержащихся в клетках живых организмов. Это связано с тем, что органические молекулы являются соединениями углерода, которые естественно могут распадаться до двухуглеродных фрагментов уксусной кислоты.

Свободная уксусная кислота обладает сравнительно слабой реакционной способностью. Ее превращения происходят в довольно жестких условиях, которые нереальны в живой клетке. Поэтому в клетках происходит активация уксусной кислоты путем ее соединения с коэнзимом А. В результате образуется метаболически активная форма уксусной кислоты – ацетил-коэнзим А.

Коэнзим А представляет собой низкомолекулярное соединение, которое состоит из фосфоаденозина, остатка пантотеновой кислоты (витамина В3) и тиоэтаноламина. Остаток уксусной кислоты присоединяется к сульфгидрильной группе тиоэтаноламина. При этом образуется тиоэфир – ацетил-коэнзим А, представляющий собой исходный субстрат цикла Кребса.

 

Ацетил-коэнзим А

 

Схема превращения промежуточных продуктов в цикле Кребса представлена на рис. 67. Процесс начинается с конденсации ацетил-коэнзима А с оксалоацетатом (щавелевоуксусной кислотой, ЩУК), в результате которой образуется лимонная кислота (цитрат). Реакция катализируется ферментом цитратсинтазой.

 

 

Рисунок 67 – Схема превращения промежуточных продуктов в цикле

трикарбоновых кислот

 

Далее под действием фермента аконитазы лимонная кислота превращается в изолимонную. Изолимонная кислота подвергается процессам окисления и декарбоксилирования. В этой реакции, катализируемой ферментом НАД-зависимой изоцитратдегидрогеназы, в качестве продуктов образуются углекислый газ, восстановленный НАД, а также a-кетоглутаровая кислота, которая затем вовлекается в процесс окислительного декарбоксилирования (рис. 68).

 

 

 

Рисунок 68 – Образование a-кетоглутаровой кислоты в цикле Кребса



 

Процесс окислительного декарбоксилирования a-кетоглутарата катализируется ферментами a-кетоглутаратдегидрогеназного мультиферментного комплекса. Этот комплекс состоит из трех различных ферментов Для его функционирования требуются коферменты. Коферменты a-кето-глутаратдегидрогеназного комплекса включают следующие водорастворимые витамины:

· витамин В1 (тиамин) – тиаминпирофосфат;

· витамин В2 (рибофлавин) – ФАД;

· витамин В3 (пантотеновая кислота) – коэнзим А;

· витамин В5 (никотинамид) – НАД;

· витаминоподобное вещество – липоевую кислоту.

Схематически процесс окислительного декарбоксилирования a-кето-глутаровой кислоты можно представить в виде следующего балансового уравнения реакции:

 

или:

 
 

 


Продуктом этого процесса является тиоэфир остатка янтарной кис-лоты (сукцината) с коэнзимом А – сукцинил-коэнзим А. Тиоэфирная связь сукцинил-коэнзима А является макроэргической.

Следующая реакция цикла Кребса представляет собой процесс субстратного фосфорилирования. В ней происходит гидролиз тиоэфирной связи сукцинил-коэнзима А под действием фермента сукцинил-КоА-синтетазы с образованием янтарной кислоты (сукцината) и свободного коэнзима А. Этот процесс сопровождается освобождением энергии, которая тут же используется для фосфорилирования ГДФ, в результате которого образуется молекула макроэргического фосфата ГТФ. Субстратное фосфорилирование в цикле Кребса:

где Фн – ортофосфорная кислота.

Образующийся в процессе окислительного фосфорилирования ГТФ может использоваться в качестве источника энергии в различных энергозависимых реакциях (в процессе биосинтеза белка, активации жирных кислот и др.). Помимо этого, ГТФ может использоваться для образования АТФ в нуклеозиддифосфаткиназной реакции



 

 

 

Продукт сукцинил-КоА-синтетазной реакции – сукцинат далее окисляется с участием фермента сукцинатдегидрогеназы. Этот энзим представляет собой флавиновую дегидрогеназу, в состав которой в качестве кофермента (простетической группы) входит молекула ФАД. В результате реакции янтарная кислота окисляется в фумаровую. Одновременно с этим происходит восстановление ФАД.

 

 

где Е – ФАД простетическая группа, связанная с полипептидной цепью фермента.

Образовавшаяся в сукцинатдегидрогеназной реакции фумаровая кислота, под действием фермента фумаразы (рис. 69), присоединяет молекулу воды и превращается в яблочную кислоту, которая затем окисляется в малатдегидрогеназной реакции в щавелево-уксусную кислоту (оксалоацетат). Последний может вновь использоваться в цитратсинтазной реакции для синтеза лимонной кислоты (рис. 67). За счет этого превращения в цикле Кребса имеют циклический характер.

 

 

Рисунок 69 – Метаболизм яблочной кислоты в цикле Кребса

 

Балансовое уравнение цикла Кребса может быть представлено в виде:

 

Из него видно, что в цикле происходит полное окисление ацетильного радикала остатка из ацетил-коэнзима А до двух молекул СО2. Этот процесс сопровождается образованием трех молекул восстановленного НАД, одной молекулы восстановленного ФАД и одной молекулы макроэргичес-кого фосфата – ГТФ.

Цикл Кребса происходит в матриксе митохондрий. Это связано с тем, что именно здесь находится большинство его ферментов. И только единственный фермент – сукцинатдегидрогеназа – встроен во внутреннюю митохондриальную мембрану. Отдельные энзимы цикла трикарбоновых кислот объединены в функциональный полиферментный комплекс (метаболон), связанный с внутренней поверхностью внутренней митохондриальной мембраны. За счет объединения ферментов в метаболон существенно повышается эффективность функционирования данного метаболического пути и появляются дополнительные возможности для его тонкой регуляции.

Особенности регуляции цикла трикарбоновых кислот во многом определяются его значением. Этот процесс выполняет следующие функции:

1) энергетическую. Цикл Кребса представляет собой наиболее мощный источник субстратов (восстановленных коферментов – НАД и ФАД) для тканевого дыхания. Помимо этого в нем происходит запасание энергии в форме макроэргического фосфата – ГТФ;

2) пластическую. Промежуточные продукты цикла Кребса являются предшественниками для синтеза различных классов органических веществ – аминокислот, моносахаридов, жирных кислот и т.д.

Таким образом, цикл Кребса выполняет двойственную функцию: с одной стороны, он является общим путем катаболизма, играющим центральную роль в энергетическом обеспечении клетки, а с другой, – обеспечивает биосинтетические процессы субстратами. Подобные обменные процессы получили название амфиболических. Цикл Кребса представляет собой типичный амфиболический цикл.

Регуляция обменных процессов в клетке тесно связана с существованием “ключевых” ферментов. Ключевыми являются те ферменты процесса, которые определяют его скорость. Как правило, одним из “ключевых” ферментов процесса является энзим, катализирующий его начальную реакцию.

Для “ключевых” ферментов характерны следующие особенности. Эти ферменты

· катализируют необратимые реакции;

· обладают наименьшей активностью по сравнению с другими энзимами, принимающими участие в процессе;

· представляют собой аллостерические ферменты.

Ключевыми ферментами цикла Кребса являются цитратсинтаза и изоцитратдегидрогеназа. Подобно ключевым ферментам других метаболических путей их активность регулируется по принципу отрицательной обратной связи: она снижается при повышении концентрации промежуточных продуктов цикла Кребса в митохондриях. Так, в качестве ингибиторов цитратсинтазы выступают лимонная кислота и сукцинил-коэнзим А, а в качестве изоцитратдегидрогеназы – восстановленный НАД.

АДФ является активатором изоцитратдегидрогеназы. В условиях повышения потребности клетки в АТФ как источника энергии, когда в ней увеличивается содержание продуктов распада (АДФ), возникают предпосылки для повышения скорости окислительно-восстановительных превращений в цикле Кребса и, следовательно, возрастания уровня ее энергетического обеспечения.

 


Эта страница нарушает авторские права

allrefrs.ru - 2017 год. Все права принадлежат их авторам!