Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Современные представления о тканевом дыхании



Распад органических веществ в живых тканях, сопровожда­ющийся потреблением кислорода и выделением диоксида угле­рода, называют тканевым дыханием. Тканевое дыхание можно наблюдать, используя срезы тканей. Если срезы инкубировать в растворе глюкозы в замкнутом сосуде, то в растворе происходит убыль глюкозы, а в воздухе над жидкостью — убыль кислорода и прирост диоксида углерода. Интенсивность тканевого дыхания в разных тканях неодинакова.

Термин тканевое дыхание прежде всего указывает на ту сто­рону процесса, которая связана с поглощением кислорода и выделением углекислого газа. Поглощение кислорода происходит в результате действия митохондриальной цепи переноса электро­нов и протонов, поэтому ее называют также дыхательной цепью. Выделение СО2 как мы видели, происходит за счет реакций де-карбоксилирования и общем пути катаболизма.

 

Главная цепь дыхательных ферментов

Здесь представлена главная цепь дыхательных ферментов в составе которой имеется три комплекса I III IV Кроме того здесь представлена редуцированная или укороченная цепь дыхательных ферментов в составе которой входит комплекс И содержащий ФАД зависимый фермент и железосерный центр обеспечивающий Такая организация переносчиков имеет свою логику Здесь вы видите что KoQ и циточром С не входят в состав комплекса Б этой системе KoQ и цитохром С выступают в качестве так называемых стыковочных узлов

На ряду с Н АД KoQ и цитохром Г выступают в клетках в качестве коллекторов эгекгронов Поток этих электронов с окисляемых субстратов может подключатся на раэны уровнях дыхательной цепи Так например пиридин вые дегидрогиназы переносят протоны и электр ны на НАД из алаксозиновые на KoQ а фермент аскорабатоксндаза переносит э кктроны непосредственно на цитс хром С

Причем на участке от восстановленного НАД до KoQ работает система двухелектронного переноса, а на участке где раоотают цитохромы переносится один электрон Вместе с тем, для того что бы молекула кислорода активировалась и стала способной связывать 4 протона с образованием 2 молекул воды требуется 4 электрона

О2 4Н+ + 4е -* 2Н2О

В цепи дыхательных фермент в используется основная масса поступающего а организм кислогя да конкретно 95° о Поэтому тканев е дыхание изучается in vitro мерой интенсивности проциессов аэробного окисления служит кислородный коэффициент. Он выражается в микролитрах кислорода поглощенного в один час в расчете на миллиграмм сухой ткани Обозначается



Этот коэфицент для различных органов разный Например » кислородный коэфицент S надпочечники 10 печень 1 "• почки 23 пульпа 7, кожа 0 8

Поглощение кислорода тканями и органами сопровождается одновременным образованием в них СО2 и Н2О Этот процесс получил название тканевое дыхание.

 

Химическая природа дегидрогеназ. НАД Зависимые аегидрогеназы

В реакциях, катализируемых этими ферментами, в качестве софермента участвует никотина мидадениндинуклеотид (НАД) Две половины молекулы НАД объединенные связью между статками фосфорной кислоты построены по

Одна половина представляет ыбои остаток нуклеотнда (адеиило вой кислоты) Другая половина тоже нуклеотид, его азотсодержащая гетероциклическая группа представлена амидом никотиновой кислоты. НАД Зависимые дегидрогеназы катализируют реакции окисления веществ путем дегидрирования при этом окисляемое вещество служит донором водорода а НАД выполняет ротъ акцептора водорода, т е восстанавливается.

НАД находится в цитозоле в свободном состоянии и взаимодействует с ферментом в момент реакции в этом отношении он сходен с субстратами ферментов

НАД Зависимые дегидрогеназы катализируют следутощи типы реакции

1 Дегидрирование г и дрокснльн ы х групп

2 Дегидрирование альдегидных групп

3 Дегидрирование аминогрупп

 

Гликозамнногликаны.

Мукополисахариды представляют собой сложные высокомолекулярные соединения (полисахариды) с не вполне выясненной структурой, обычно построенные из гексозаминов (стр 82) и гексуроновых кислот, например глюкуроновой кислоты, формула которой приведена ниже В настоящее время с химической стороны наиболее изучены так называемые кислые Мукополисахариды, именуемые также мукополиурони-дами, т е полисахаридами, в состав которых входят уроновые кислоты (D-глюкуроновая, иногда ее изомер—идуроновая кислота) Мукополисахариды содержатся в различных живых организмах



V животных зги соединения входят в состав главным образом соединительной ткани и особенно в состав межтканевого н межклеточного веществ

Вязкие секреты (слизи), выделяемые различными железами, предохраняющие стенки многих органов от механических повреждений или облегчающие прохождение тех или иных тел через узкие трубки (например, пищи через пишевод), также богаты мукополисахарндами

Мукпшшисазмриды яаходятса в тканях частые г. свободной форме, частью в связанном с белками состоашщ, в форме мукопротеидов

В сыворотке крови в норме содержится лишь небольшое количество мукополисахаридов, частью непрочно связанных с белками Однако при некоторых заболеваниях, сопровождающихся изменением обменных процессов в соединительной ткани, наблюдается усиленный распад этих веществ, и тогда Мукополисахариды иди продукты их

Помимо этого, Мукополисахариды играют очень важную роль в процессах регенерации и роста тканей, в оплодотворении, взаимодействии организма с рядом инфекционных агентов (бактерий, вирусов) и т д

Из отдельных представителей кислых мукополисахаридов следует отметить гиалуроновую кислот>, х о ндрчэитиисе р-яую кислоту я гешри я

Эти Мукополисахариды содержат глюкуроновую кислоту и поэтому относятся к числу мукопояиуронидов Гиатуроновая кислота является одним ю наиболее распространенных и хорошо изученных мукополисахаридов

Молекула гиалуроновой кислоты построена из очень большого числа остатков глюкуроновой кислоты и заеткштжжазамжа Ниже пржеднт-ся структура фрагмента гиалуроновон кнсчеты

Молекулярный вес ее доходит до нескольких миллионов При растворении в воде гиалуроновая кислота и ее соли образуют чрезвычайно вязкие коллоидные растворы (гепи)

Биологическое значение гиалуроновой кислоты состоит прежде всего в том. что она является цементирующим, как бы склеивающим веществом соединительнотканных систем организма Она препятствует проникновению в ткани многих веществ, способных оказывать вредное действие на организм Барьерные функции

ее физико-химическим состоянием В особенно большом количестве гиалуроновая кислота находится в стекловидном теле, в пупочном канатике, в синовиальной жидкости, в капсулах некоторых бактерий

Хондроитинсерная кислота наряду с гиаяурояшой- ааивлой содержится в большим каштмгк в различных видах соединительной ткани

Особенно много ее содержится в хрящах, где она связана с белковыми веществами (так называемые хондромукоид ы) Подобно гиалуроновой кислоте, хондроитинсерная кислота является высокополимерным соединением, в состав которого зходят ацеетдхоыдроза-мин (гадактозамин), ппокуроиоаая и серная кислоты Молекулярный вес хондроитинсерной кислоты около 200 000 Известно несколько типов (А, В, С) хондроитинсерной кислоты, отличающихся по

месту присоединения остатка серной кислоты к галактозе и другим особенностям в структуре Генарнн. Широко распространенный в животных тканях гепарин является мукополисахаридом, в состав которого входят глюкозамин, глю-куроновая кислота и эфирно связанная серная кислота Молекулярный вес гегарина ПООО— 20000 Таким образом, этот мукополисахарид представляет собой, по сравнению с другими веществами этой же группы, сравнительно простое соединение

Биологическое значение гешрина определяется его способностью задерживать свертывание крови (стр 471) Гекарян может образовывать комплексы срядим белковых веществ, в гом чииш с некоторыми ферментами

Гепарин в настоящее время широко применяется в качестве естественного стабилизатора крови при ее переливании, а также как средство для предотвращения тромбозов

 


Эта страница нарушает авторские права

allrefrs.ru - 2018 год. Все права принадлежат их авторам!