Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Удаленная адресация и разрешение адресов. Схема разрешения имен с использованием DNS-серверов



 

Инициатором связи процессов друг с другом всегда является человек. Компьютер не разбирается в смысловом содержании символов, ему проще оперировать числами, желательно одного и того же формата, которые помещаются, например, в 4 байт или в 16 байт. Поэтому каждый компьютер в сети для удобства работы вычислительных систем получает числовой адрес. Возникает проблема отображения пространства символьных имен вычислительных комплексов в пространство их числовых адресов. Эта проблема получила наименование проблемы разрешения адресов.

Первый способ решения заключается в том, что на каждом сетевом компьютере создается файл, содержащий имена всех машин, доступных по сети, и их числовые эквиваленты. Обращаясь к этому файлу, операционная система легко может перевести символьный удаленный адрес в числовую форму. Такой подход использовался на заре эпохи глобальных сетей и применяется в изолированных локальных сетях в настоящее время. Действительно, легко поддерживать файл соответствий в корректном виде, внося в него необходимые изменения, когда общее число сетевых машин не превышает нескольких десятков.

Второй метод разрешения адресов заключается в частичном распределении информации о соответствии символьных и числовых адресов по многим комплексам сети, так что каждый из этих комплексов содержит лишь часть полных данных. Он же определяет и правила построения символических имен компьютеров.

Один из таких способов, используемый в Internet, получил английское наименование domain name service или сокращенно DNS.

Организуем логически все компьютеры сети в некоторую древовидную структуру, напоминающую структуру директорий файловых систем, в которых отсутствует возможность организации жестких и мягких связей и нет пустых директорий. Будем рассматривать все компьютеры, входящие во Всемирную сеть, как область самого низкого ранга – ранга 0. Разобьем все множество компьютеров области на какое-то количество подобластей (domains). При этом некоторые подобласти будут состоять из одного компьютера, а некоторые – более чем из одного компьютера. Каждую подобласть будем рассматривать как область более высокого ранга. Присвоим подобластям собственные имена таким образом, чтобы в рамках разбиваемой области все они были уникальны. Повторим такое разбиение рекурсивно для каждой области более высокого ранга, которая состоит более чем из одного компьютера, несколько раз, пока при последнем разбиении в каждой подобласти не окажется ровно по одному компьютеру. Глубина рекурсии для различных областей одного ранга может быть разной, но обычно в целом ограничиваются 3 – 5 разбиениями, начиная от ранга 0.



В результате мы получим дерево, неименованной вершиной которого является область, объединяющая все компьютеры, входящие во Всемирную сеть, именованными терминальными узлами – отдельные компьютеры (точнее – подобласти, состоящие из отдельных компьютеров), а именованными нетерминальными узлами – области различных рангов. Используем полученную структуру для построения имен компьютеров. Двигаясь от корневой вершины к терминальному узлу – отдельному компьютеру, будем вести запись имен подобластей справа налево и отделять имена друг от друга с помощью символа «.».

Допустим, некоторая подобласть, состоящая из одного компьютера, получила имя a102_1, она входит в подобласть, объединяющую все компьютеры Белорусского государственного технологического университета с именем bstu. БГТУ, в свою очередь, входит в подобласть всех компьютеров МО РБ с именем unibel, которая включается в область ранга 1 всех компьютеров Республики Беларусь с именем by. Тогда имя рассматриваемого компьютера во Всемирной сети будет a102_1.bstu.unibel.by.

В каждой полученной именованной области, состоящей более чем из одного узла, выберем один из компьютеров и назначим его ответственным за эту область – сервером DNS. Сервер DNS знает числовые адреса серверов DNS для подобластей, входящих в его зону ответственности, или числовые адреса отдельных компьютеров, если такая подобласть включает в себя только один компьютер. Кроме того, он также знает числовой адрес сервера DNS, в зону ответственности которого входит рассматриваемая область (если это не область ранга 1), или числовые адреса всех серверов DNS ранга 1 (в противном случае). Отдельные компьютеры всегда знают числовые адреса серверов DNS, которые непосредственно за них отвечают.



Рассмотрим теперь, как процесс на компьютере a102_1.bstu.unibel.by может узнать числовой адрес компьютера ssp.brown.edu. Для этого он обращается к своему DNS-серверу, отвечающему за область bstu.unibel.by, и передает ему нужный адрес в символьном виде. Если этот DNS-сервер не может сразу представить необходимый числовой адрес, он передает запрос DNS-серверу, отвечающему за область unibel.by. Если и тот не в силах самостоятельно справиться с проблемой, он перенаправляет запрос серверу DNS, отвечающему за область 1-го ранга by. Этот сервер может обратиться к серверу DNS, обслуживающему область 1-го ранга edu, который, наконец, затребует информацию от сервера DNS области brown.edu, где должен быть нужный числовой адрес. Полученный числовой адрес повсей цепи серверов DNS в обратном порядке будет передан процессу, направившему запрос (рисунок).

В действительности, каждый сервер DNS имеет достаточно большой кэш, содержащий адреса серверов DNS для всех последних запросов. Рассмотренный способ разрешения адресов позволяет легко добавлять компьютеры в сеть и исключать их из сети, так как для этого необходимо внести изменения только на DNS-сервере соответствующей области.

Если DNS-сервер, отвечающий за какую-либо область, выйдет из строя, то может оказаться невозможным разрешение адресов для всех компьютеров этой области. Поэтому обычно назначается не один сервер DNS, а два – основной и запасной.

В реальных сетевых вычислительных системах обычно используется комбинация рассмотренных подходов. Для компьютеров, с которыми чаще всего приходится устанавливать связь, в специальном файле хранится таблица соответствий символьных и числовых адресов. Все остальные адреса разрешаются с использованием служб, аналогичных службе DNS.


 

Основные понятия информационной безопасности. Угрозы безопасности

 

Важность решения проблемы информационной безопасности в настоящее время общепризнанна. Убытки ведущих компаний в связи с нарушениями безопасности информации составляют триллионы долларов. Проблема обеспечения безопасности носит комплексный характер, для ее решения необходимо сочетание законодательных, организационных и программно-технических мер.

Т.О., обеспечение информ-ой безопасности требует системного подхода и нужно использовать разные средства и приемы – морально-этические, законодательные, административные и технические. Нас будут интересовать последние. Технические средства реализуются программным и аппаратным обеспечением и решают разные задачи по защите, они могут быть встроены в операционные системы либо могут быть реализованы в виде отдельных продуктов. Во многих случаях центр тяжести смещается в сторону защищенности операционных систем.

Есть несколько причин для реализации дополнительных средств защиты. Наиболее очевидная – помешать внешним попыткам нарушить доступ к конфиденциальной информации. Не менее важно гарантировать, что каждый программный компонент в системе использует системные ресурсы только способом, совместимым с установленной политикой применения этих ресурсов. Такие требования абсолютно необходимы для надежной системы. Кроме того, наличие защитных механизмов может увеличить надежность системы в целом за счет обнаружения скрытых ошибок интерфейса между компонентами системы. Раннее обнаружение ошибок может предотвратить «заражение» неисправной подсистемой остальных.

Политика в отношении ресурсов может меняться в зависимости от приложения и с течением времени. ОС должна обеспечивать прикладные программы инструментами для создания и поддержки защищенных ресурсов. Здесь реализуется важный для гибкости системы принцип – отделение политики от механизмов. Механизмы определяют, как может быть сделано что-либо, тогда как политика решает, что должно быть сделано. Политика может меняться в зависимости от места и времени. Желательно, чтобы были реализованы по возможности общие механизмы, тогда как изменение политики требует лишь модификации системных параметров или таблиц.

К сожалению, построение защищенной системы предполагает необходимость склонить пользователя к отказу от некоторых интересных возможностей. Например, письмо, содержащее в качестве приложения документ в формате Word, может включать макросы. Открытие такого письма влечет за собой запуск чужой программы, что потенциально опасно. То же самое можно сказать про Web-страницы, содержащие апплеты. Вместо критического отношения к использованию такой функциональности пользователи современных компьютеров предпочитают периодически запускать антивирусные программы и читать успокаивающие статьи о безопасности Java.

Угрозы безопасности

Знание возможных угроз, а также уязвимых мест защиты, которые эти угрозы обычно эксплуатируют, необходимо для того, чтобы выбирать наиболее экономичные средства обеспечения безопасности. Считается, что безопасная система должна обладать свойствами конфиденциальности, доступности и целостности. Любое потенциальное действие, которое направлено на нарушение конфиденциальности, целостности и доступности информации, называется угрозой. Реализованная угроза называется атакой.

Конфиденциальная (confidentiality) система обеспечивает уверенность в том, что секретные данные будут доступны только тем пользователям, которым этот доступ разрешен (авторизованные).

Под доступностью (availability) понимают гарантию того, что авторизованным пользователям всегда будет доступна информация, которая им необходима.

Целостность (integrity) системы подразумевает, что неавторизованные пользователи не могут каким-либо образом модифицировать данные.

Защита информации ориентирована на борьбу с так называемыми умышленными угрозами, т.е. с теми, которые, в отличие от случайных угроз (ошибок пользователя, сбоев оборудования и др.), преследуют цель нанести ущерб пользователям ОС.

Умышленные угрозы подразделяются на активные и пассивные. Пассивная угроза – несанкционированный доступ к информации без изменения состояния системы, активная – несанкционированное изменение системы. Пассивные атаки труднее выявить, так как они не влекут за собой никаких изменений данных. Защита против пассивных атак базируется на средствах их предотвращения.

Можно выделить несколько типов угроз. Наиболее распространенная угроза – попытка проникновения в систему под видом легального пользователя, например попытки угадывания и подбора паролей. Более сложный вариант – внедрение в систему программы, которая выводит на экран слово login. Многие легальные пользователи при этом начинают пытаться входить в систему, и их попытки могут протоколироваться. Такие безобидные с виду программы, выполняющие нежелательные функции, называются «троянскими конями». Иногда удается торпедировать работу программы проверки пароля путем многократного нажатия клавиш del, break, cancel и т. д. Для защиты от подобных атак ОС запускает процесс, называемый аутентификацией пользователя.

Угрозы другого рода связаны с нежелательными действиями легальных пользователей, которые могут, например, предпринимать попытки чтения страниц памяти, дисков и лент, которые сохранили информацию, связанную с предыдущим использованием. Защита в таких случаях базируется на надежной системе авторизации. В эту категорию также попадают атаки типа отказ в обслуживании, когда сервер затоплен мощным потоком запросов и становится фактически недоступным для отдельных авторизованных пользователей.

Наконец, функционирование системы может быть нарушено с помощью программ-вирусов или программ-«червей», которые специально предназначены для того, чтобы причинить вред или недолжным образом использовать ресурсы компьютера. Общее название угроз такого рода – вредоносные программы (malicious software). Обычно они распространяются сами по себе, переходя на другие компьютеры через зараженные файлы, дискеты или по электронной почте. Наиболее эффективный способ борьбы с подобными программами – соблюдение правил «компьютерной гигиены». Многопользовательские компьютеры меньше страдают от вирусов по сравнению с персональными, поскольку там имеются системные средства защиты.


 


Эта страница нарушает авторские права

allrefrs.ru - 2018 год. Все права принадлежат их авторам!