Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Умножение и деление десятичных дробей на целое число



Умножение и деление десятичных дробей на целое число тесно связано с умножением и делением целых чисел. Чтобы подвести учащихся к пониманию того, как производится умножение деся­тичной дроби на целое число, и сделать обобщение в виде прави­ла, необходимо начать с рассмотрения простейших случаев (при этом учитель должен воспользоваться тем, что учащиеся уже имеют понятие о действии умножения), например: 1,2-3=. В этом выражении действие умножения заменяется действием сло­жения: 1,2-3 = 1,2+1,2+1,2=3,6, 1,2-3=3,6. Внимание учащихся надо обратить на то, что сначала умножается целое число на множитель и это произведение целых отделяется запятой, а затем умножаются десятые доли на множитель. Подобные случаи умно­жения (без перехода через разряд ни в одном разряде) выполня­ются устно. Случаи умножения с переходом через разряд выпол­няются в столбик:

Множители перемножаются как целые числа и в полученном произведении отделяется запятой справа столько цифр, сколько десятичных знаков в первом множителе.


Примеры на умножение десятичной дроби на целое число под­ираются в той же последовательности, что и примеры на умно-1(ение целых чисел.

• Наибольшие трудности для учащихся представляют примеры, в Которых в первом множителе один или несколько десятичных раков равны нулю, а также примеры, в которых в произведении ^случается нуль целых.

,0,005

Например: Х0,032 38

0,285

« Подобные примеры надо чаще предъявлять учащимся, повторив предварительно правила умножения нуля на целое число и целого

числа на нуль.

При делении десятичной дроби на целое число также следует соблюдать определенную последовательность:

1.Все разряды делимого делятся на делитель без остатка:
6,48:2 = ?. Делим на 2 сначала целые, отделяем целые в частном
запятой, потом делим десятые доли и, наконец, сотые доли:
6,48:2=3,24. Такие примеры решаются устно.

2. Целое или какая-либо из долей делимого не делится нацело

на делитель: 4,86:3.

Делим 4 целых на 3. В частном получаем едини­цу, отделяем ее запятой. В остатке осталась едини­ца. Дробим ее в десятые доли и прибавляем еще 8 десятых. 18 десятых делим на 3, получаем 6 деся­тых. Далее 6 сотых делим на 3, получаем 2 сотых. Частное равно 1,62.

3. Особые случаи деления, когда в частном полу-

чаются нули: 1) 0,012:4=0,003 2) 12,432:6=?

3) 1:8=?

1,000 ' 8
12,432 '12
20 16

43 42

40 40

12 12

8 ОД25~





4. Деление десятичной дроби на двузначное число:

|ной. Для этого нужно, чтобы знаменатель этой дроби стал ен 10, 100 или 1000. В десятых долях эту дробь выразить нельзя, К как 10 не делится на 4 нацело. Посмотрим, нельзя ли вы­лить эту дробь в сотых долях: 100:4=25. Значит, и числитель, I Ч [знаменатель дроби надо умножить на 25 (дополнительный о о ос"71л .ожитель 25). Следовательно, 4'=:Т^5"=ТШ=^!^^' Выразим обь -д- в десятичных долях. Знаменатель 10 не подходит, так как О не делится на 8 нацело, знаменатель 100 тоже не подходит по рй же причине, попробуем взять знаменатель 1000:8=125 (до- Олнительный множитель 125). Следовательно. 5_5>125_ 625 _ —-- ~ . Л г1----- 1ЛГ>Г> ----

Умножение и деление десятичных дробей, так же как и сое ветствующие действия с целыми числами, изучаются параллельн! Каждое действие учащиеся учатся проверять обратным ему дейс] вием.

Решаются также примеры, в которых содержатся действия вой и второй ступени со скобками, чтобы поупражнять учащихс в применении правил порядка действий. Кроме того, следует пре ложить и примеры на нахождение неизвестного множимого, неи| вестного делимого.

Запись десятичной дроби в виде обыкновенной и наоборот

С выражением десятичной дроби в виде обыкновенной учащи ся уже сталкивались неоднократно. Во-первых, образование дес! тичной дроби рассматривалось как частный случай обыкновение дроби, у которой знаменатель — единица с нулями, во-вторыэ десятичную дробь в виде обыкновенной учащиеся выражали пр знакомстве с действиями над десятичными дробями. Запись дес>1 тичной дроби в виде обыкновенной сводится к записи десятично!



3 7

дроби со знаменателем, например: 0,3=тп; 0.0?=7731

Й7Ч '

1,873=1^ и т. д.

Обратное упражнение, т. е. запись обыкновенной дроби в виде десятичной, выполняется так:

У обыкновенной дроби -^ знаменатель дроби 5, у десятичной

же дроби знаменатель должен выражаться единицей с нулями, т. е. 10, 100, 1000 и т. д. Подбираем такое число, при умножении на которое числа 5 получалось бы 10, 100, 1000, т. е. знаменатель дроби выразился бы единицей с нулями. Если 5 «2, то получится! 10. Чтобы дробь не изменилась, надо и числитель умножить на 2.<

1 1 • 2 2 3

Следовательно, 5'=5Т2":=То':=^'^' Запишем дробь -? в виде деся-


Но не всегда этим способом можно (при замене обыкновенной дроби десятичной) выразить знаменатель обыкновенной дроби 1 с несколькими нулями. Возьмем, например, дробь -я-. Попробуем взять знаменатель 10. Он не подходит, так как нельзя в данном случае получить дополнительный множитель: 10 не делится наце­ло на 3. То же получим, если возьмем знаменатели 100, 1000. Следовательно, дробь -^ нельзя этим способом выразить десятич­ной дробью.

Существует второй способ замены обыкновенной дроби деся­тичной. Всякую обыкновенную дробь можно рассматривать как

з

частное от деления числителя на ее знаменатель. Возьмем дробь -^. Ее можно рассматривать как частное от деления 3 на 4. Выпол­ним деление:

Рассуждение: «3 на 4 не делится нацело. В част­ном пишем нуль целых и ставим после нуля запя­тую. Раздробляем 3 в десятые доли. 30 десятых делим на 4. В частном пишем 7 десятых. В остатке 2 десятых. Раздробим 2 десятых в сотые доли. Полу­чим 20 сотых. Делим на 4. В частном 5 сотых.

,0,75

Итого в частном 0,75. Следовательно, -т-=0,75». Проверка. Нужно частное умножить на делитель. В произве­дении должно получиться число, равное делимому:

X

0,75-4=3.


После рассмотрения еще нескольких примеров учащиеся ны сами сделать вывод о том, как обыкновенную дробь зал десятичной.

«Вернемся к дроби ^-. Мы видели| , 1 дробь т нельзя заменить десятичной п«

способом. Попробуем заменить ее десяти вторым способом, т. е. делением числите^ знаменатель. Если будем продолжать д дальше, то увидим, что всегда в остатке о единица, а в частном 3. Деление можно! должить бесконечно. Но обычно его пред

-------- ют, делят до первого, второго или тре!

знака после запятой, например: 1:3=0,33| В данном случае деление закончили на тысячных долях. ТМ показывают, что деление можно продолжить и дальше. 0,333..74 приближенное, неточное значение дроби т?. Можно предложит!

учащимся обратить в десятичные еще ряд обыкновенных дробей

21513 п -

3"' Б"' !)' 7' 7 и т' д' Получаются приближенные десятичные дроом После рассмотрения замены различных обыкновенных дроои1 десятичными учащиеся убеждаются, что одни обыкновении! дроби можно точно выразить десятичными — в этом случае полу» чаются конечныедесятичные дроби -г = 0,2 , другие же можнС заменить только бесконечнымидесятичными дробями

| = 0,333.. ^

Совместные действия с обыкновенными и десятичными дробями

После изучения обыкновенных и десятичных дробей программой предусмотрены совместные действия над дробями. Перед изучением этой темы следует повторить отдельно все действия над обыкновен­ными и десятичными дробями, устно и письменно закрепить замену обыкновенной дроби десятичной и наоборот. Все эти виды упражне­ний должны быть хорошо отработаны, иначе учащиеся при выполне­нии совместных действий с дробями столкнутся с непреодолимыми трудностями, что вызовет у школьников с нарушением интеллекта чувство беспомощности, негативное отношение к работе. 338


При выполнении совместных действий с десятичными и обыкно­венными дробями в школе VIII вида, как показывает опыт, целесооб­разнее либо все обыкновенные дроби заменять десятичными и вы­полнять действия только над десятичными дробями, либо наоборот.

Сначала решаются задачи и примеры с двумя компонентами. Учитель, объясняя, как выполнить действие, должен обратить внимание учащихся на целесообразность замены дробей десятич­ными или обыкновенными. Например, в примере 0,45+-я- целесо­образно дробь -д- заменить десятичной, так как это сделает вычис­ления более простыми. Если же 0,45 заменить обыкновенной дро­бью, то вычисления будут более громоздкими.

В этом учащихся следует убедить, предложив выполнить дейст­вия сначала в десятичных, а затем в обыкновенных дробях:

45

1,45+^=?

!2&

Г=°'5 1,45+0,5=1,95

Сначала учитель подсказывает учащимся, с какими дробями целесообразнее выполнять действия.

По мере накопления опыта учащиеся сами должны выбирать наиболее удобные пути решения в каждом конкретном случае.

МЕТОДИКА ИЗУЧЕНИЯ ПРОЦЕНТОВ

Понятие о проценте дается учащимся специальной школы VIII вида после изучения десятичных дробей. Процент — это дробь со знаменателем 100, имеющая особое название (подобно ^ — половина) и особую форму записи (удд- — процент). Слово «про­цент» обозначается знаком %.

Десятичные дроби со знаменателем 100 наиболее удобны для вычислений, так как во многих мерах метрической системы встреча­ется единичное отношение 100 (1 м=100 см, 1 р. = 100 к., 1 га=100а, 1 ц=100кг; следовательно, 1 см=0,01 м, 1 к.=0,01 р., 1 а=0,01 га, 1 кг=0,01 ц), таг часть числа обозначается так: 1%. Можно записать, что 1 см=0,01 м=1% метра, 1 к.=0,01 р. = 1% рубля, 1а=0,01 га = 1% гектара, 1 кг=1% центнера. В данном случае мы выразили полученные числа в процентах. Отвлеченные


т

числа также можно выразить в процентах. Учащимся это мож объяснить так: «1% — это -т^.частъ числа. Чему же равно и

1 100

число? Оно в 100 раз больше, т. е. тятт' 100=™*-=!. Знач!

если ^0 = 1%, то -^=1 = 100%, 2=200%, 5=500* 15=1500%» и т. д.

На основе понятия о проценте и умений выразить (записат числа в процентах необходимо объяснить значение часто встр чающихся на производстве и в быту выражений, например: «РаС чий выполнил норму по обработке деталей на 100%». Это озна«, ет, что рабочий обработал за смену то количество деталей, кот. рое было запланировано, например 150 деталей. Если рабоч! сделал меньше 150 деталей, то он не выполнил норму, т. е. в| полнил ее меньше чем на 100%. Если рабочий сделал болы 150 деталей, то он перевыполнил норму, т. е. выполнил ее болы чем на 100%.

Учащиеся знакомятся не только с выражением целого чис; но и десятичных дробей процентами.

В этом случае учитель при объяснении также исходит из опре­деления процента: 0,01 = 1%, следовательно, 0,02=2%; 0,05=5%; 0,25=25%; 0,5=50%, так как 0,5=0,50=50%; 1,7=170%. На основании подобных рассуждений, наблюдений и сравнения деся-1 тичной дроби и числа, выражающего эту дробь в процентах, неко­торые учащиеся могут сделать вывод:чтобы десятичную^ дробь заменить процентами, надо перенести за-! пятую вправо на два знака и поставить знак %. Вместо недостающих знаков ставятся нули. Обыкновенную дробь также можно выразить (заменить) процентами. Ее нужно для этого обратить в десятичную дробь и применить правило замены

десятичной дроби процентами, например: -г=0,8=80%; 2^=2,25=225%.

Учащихся школы VIII вида знакомят и с обратной задачей: выражением процентов в десятичных или обыкновенных дро­бях.

Рассуждения ведутся также исходя из понятия о проценте: 1%=0,01; 2%=0,02%; 40%=0,40=0,4; 100% = 1; 200%=2;

150% = 1,5; ^.=0,5=50%; ^=0,25=25%; -^=0,1 = 10%. 340


[ На основе наблюдений и сравнения числа процентов и дроби, выражающей это число, учащиеся подводятся к выводу:чтобы выразить проценты десятичной дробью или це­лым числом, надо запятую перенести на два зна­ка влево и знак % не писать: 20%=0,2; 300%=3.

Решение задач на проценты

Программой школы VIII вида предусмотрено решение задач на нахождение одного и нескольких процентов от числа, а также нахождение числа по одному проценту.

Задачи на проценты не представляют собой ничего нового для учащихся по сравнению с ранее решавшимися задачами на нахож­дение одного и нескольких частей от числа и на нахождение числа по одной и нескольким частям. Поэтому, прежде чем ре­шать задачи на проценты, надо повторять решение ранее решав­шихся задач и довести до сознания каждого учащегося, что 1% — это тоже дробь (-тщ и 0,01] , но записанная особым

образом.

Сначала дается понятие вычисления 1% и нескольких процен­тов от числа и вырабатывается навык выполнения этих действий. Например, надо найти 1% от 200. Рассуждаем так: 1%=^о"-Значит, надо найти -тта- (т.е. взять 1 сотую) от 200, т. е.

200:100-1=2.

Учащиеся должны решить несколько таких примеров и на ос­нове наблюдений сделать вывод: чтобы найти 1% от числа, надо это число разделить на 100. Только после этого учащиеся начнут решать задачи на нахождение 1% от числа типа: «Рабочий полу­чает 1000 р. 1% от своего заработка он платит налог. Сколько денег рабочий платит?»

Решение.

1) Найдем 1% от 1000 р.

1%=-; -щ- от 1000 р. — это 1000 р.: 100.1 = 10 р.

Ответ. Рабочий платит налог 10 р.

Аналогично подходят и к решению задач на нахождение не­скольких процентов от числа. Например, надо найти 5% от 200, т.е. -т от 200. Находим сначала 1%, т. е. долю от 200


 

 



(200:100-1=2), и берем 5 таких долей, т. е. 5%. Знач» 2 «5= 10. Вычисления записываются так: 200:100-5=10.

Учитель обязательно должен каждый раз спрашивать: «Что м получаем, когда делим число на 100? Почему умножаем на чис; процентов?» Это позволяет учащимся более сознательно относит ся к вычислениям.

Задачи на нахождение нескольких процентов от числа целес( образно решать сначала в два действия и только тогда, когд учащиеся осознанно будут относиться к записи решения задач сложным примером, содержащим два действия, можно будет заш сать действия в одну строку. Например: «В школу привезли 70 учебников. 9% учебников передали в библиотеку. Сколько учев ников передали в библиотеку?»

2-й способ записи решения. 1. Сколько учебников передали в библиотеку? 700 уч.: 100-9=63 уч. Ответ. 63 учебника передали в библиотеку.

1-й способ записи решения.

1. Чему равен 1% от числа
700 учебников?

700 уч.: 100=7 уч.

2. Сколько учебников переда­
ли в библиотеку?

7 уч. • 9=63 уч. Ответ. 63 учебника переда­ли в библиотеку.


Задачи на нахождение 1% от числа и на нахождение несколь­ких процентов от числа необходимо постоянно сопоставлять, нахо­дить черты сходства и различия.

Задачи на нахождение числа по одному процентуобрат­им задачам на нахождение 1% и нескольких процентов от числа. 11оэтому нужно сначала рассмотреть прямую задачу, решить ее, а потом из нее образовать обратную ей задачу, решить ее и сопо­ставить решение прямой и обратной задач.

Прямая задача: «В саду посадили 200 саженцев фруктовых де-, ревьев. 1 % саженцев погиб. Сколько саженцев фруктовых деревьев погибло?» 1 % от 200 — это 200:100=2 (саж.).

Обратная задача: «В саду посадили саженцы фруктовых деревьев. 2 саженца погибло, что составляет 1 % от всех посаженных деревьев. Сколько саженцев фруктовых деревьев посадили в саду?»

Рассуждение проводим так: «2 саженца — это 1% всех дере­вьев, а все саженцы составляют 100%, т. е. их число в 100 раз больше 2, поэтому нужно 2*100. Следовательно, если 1% состав­ляет 2 саженца, то 100% составляет 2 • 100=200 (саженцев)».

Решив еще несколько аналогичных задач и примеров на нахож­дение числа по одному проценту и сопоставив их с прямыми задачами и примерами, можно подвести учащихся к выводу:чтобы найти число по 1%, нужно это число умно­жить на 100.


 


Часто встречаются задачи, в которых нужно вычислить число! процентов, превышающих 100%. Эти задачи имеют большое жиз-| ненно-практическое значение и часто встречаются.

Например: «Норма выработки рабочего — 400 деталей за смену. Он выполнил норму на 115%. Сколько деталей он сде­лал?»

Находим 115% от 400. 400 дет.: 100-115=460 дет.

Ответ. Рабочий сделал за смену 460 деталей.

Задачу можно решить и другим способом. Рассуждаем так: 400 деталей — это 100%. Рабочий выполнил норму на 115%, т. е. он перевыполнил план на 15% (115% —100% = 15%). Найдем, сколько деталей рабочий сделал сверх плана. Надо найти 15% от 400 деталей. 400 дет.: 100-15=60 дет. Далее узнаем, сколько деталей сделал рабочий за смену: 400 дет.+60 дет.=460 дет.

Ответ. Рабочий сделал за смену 460 деталей. 342


Вопросы и задания

1.Опираясь на программу, укажите, над формированием каких понятий
по теме «Десятичные дроби» вы будете работать на уроках математики в
старших классах специальной школы VIII вида.

2. Как расширяются представления учащихся о десятичной системе счис­
ления при изучении нумерации десятичных дробей? Начертите таблицу клас­
сов и разрядов.

3. Составьте фрагмент одного из уроков, на котором учащиеся получают
понятие о десятичной дроби, сокращении десятичной дроби, приведении
десятичных дробей к наименьшему общему знаменателю.

4. Приведите примеры приемов активизации познавательной деятельности
учащихся в процессе изучения действий с десятичными дробями.

5. Составьте упражнения разных видов для закрепления навыков вычис­
ления с десятичными дробями. Продумайте систему коррекционной работы
при использовании этих упражнений.


Глава 19 МЕТОДИКА РЕШЕНИЯ АРИФМЕТИЧЕСКИХ ЗАДАЧ

Арифметические задачи в курсе математики в школе VIII вк_ занимают значительное место. Почти половина времени на урока математики отводится решению задач. Это объясняется больше коррекционно-воспитательной и образовательной ролью, котору| они играют при обучении школьников с нарушением интеллекта

Решение арифметических задач помогает раскрыть основно смысл арифметических действий, конкретизировать их, связать определенной жизненной ситуацией. Задачи способствуют усвс нию математических понятий, отношений, закономерностей, этом случае они, как правило, служат конкретизации этих поня­тий и отношений, так как каждая сюжетная задача отражав] определенную жизненную ситуацию.

При решении задач у умственно отсталых школьников развив! ется произвольное внимание, наблюдательность, логическое мыт ление, речь, сообразительность. Решение задач способствует раа витию таких процессов познавательной деятельности, как анализ синтез, сравнение, обобщение.

В процессе решения арифметических задач учащиеся учато планировать и контролировать свою деятельность, овладеваю1 приемами самоконтроля (проверка задачи, прикидка ответа, реше ние задачи разными способами и т. д.), у них воспитывается на стойчивость, воля, развивается интерес к поиску решения задачи

Велика роль решения задач ъ подготовке умственно отсталы}, учащихся к жизни, к их дальнейшей трудовой деятельности] Именно упражнения в решении и составлении задач помогая учащимся видеть в окружающей действительности такие факты . закономерности, которые используются в математике. При реше нии сюжетных задач учащиеся учатся переводить отношения между предметами и величинами на «язык математики».

В арифметических задачах используется числовой материал, отражающий успехи нашей страны в различных отраслях народно' го хозяйства, культуры, науки и т. д. Это способствует расшире нию кругозора учащихся, обогащению их новыми знаниями о( окружающей действительности.

Обучая самих учащихся «добывать» числовой материал для составления задач, учитель имеет возможность показать учащим-) с я, что задачи ежедневно ставит сама жизнь и уметь решать 344


•такие задачи — значит подготовить себя к ориентировке в окру-'жающей действительности.

Решение арифметических задач на уроках математики позволит реализовать задачу подготовки учащихся к более успешному овла­дению профессиональным трудом, сблизить обучение с жизнью.

Умением решать арифметические задачи учащиеся овладевают с большим трудом.

Анализ контрольных работ учащихся, наблюдения и специаль­ные исследования показывают, что ошибки, которые учащиеся допускают при решении задач, можно классифицировать так:

\. Привнесение лишнего вопроса и действия.

2. Исключение нужного вопроса и действия.

3. Несоответствие вопросов действиям: правильно поставлен­
ные вопросы и неправильный выбор действий или, наоборот, пра­
вильный выбор действий и неверная формулировка вопросов.

4. Случайный подбор чисел и действий.

5. Ошибки в наименовании величин при выполнении действий:
а) наименования не пишутся; б) наименования пишутся ошибоч­
но, вне предметного понимания содержания задачи; в) наименова­
ния пишутся лишь при отдельных компонентах.

6. Ошибки в вычислениях.

7. Неверная формулировка ответа задачи (сформулированный
ответ не соответствует вопросу задачи, стилистически построен
неверно, не соответствует ответу последнего действия и т. Д-^__3

Причины ошибочных решений задач умственно отсталыми школьниками кроются в первую очередь в особенностях мышле­ния этих детей.

Трудности в решении задач у умственно отсталых учащихся связаны с недостаточным пониманием предметно-действенной си­туации, отраженной в задаче, и математических связей и отноше­ний между числовыми данными, а также между данными и иско­мыми.

Т)пыт показывает, что школьники с нарушением интеллекта справляются с решением задач, если они составлены на основе действий с реальными предметами. Основные трудности возника­ют тогда, когда необходимо наглядно представить словесно сфор­мированные задачи. Б их сознании не всегда возникает отражение действительного содержания ситуации и заключенных в ней пред­метных отношений. Понимание условия задачи нередко не отвеча­ет ее предметному содержанию.

Перова М. Н.


II


При решении задач учащиеся не фиксируют свое внимание I математических отношениях, с учетом которых должны выпи няться действия.

Поверхностный анализ содержания задачи приводит к отклон нию от конечной цели. Школьники с нарушением интеллектя I осознают условия задачи, изменяют и упрощают его. Нередко н| воспроизведении текста задачи они привносят в условие штампы руководствуются ими при решении, а действительные связи и отм шения не учитывают, опираются на фрагменты или несущественны' элементы задачи, при выборе действий руководствуются словами всего, меньше, больше, осталось. В силу стереотипности действии характерной для умственно отсталых учащихся, они решают задачи шаблонными способами, руководствуясь случайными ассоциациями вызванными созвучием слов и выражений. Уподобление одних зад;1ч другим — наиболее часто встречающийся вид ошибок, так как оси знание сходства и различия арифметических задач представляет для учащихся с нарушением интеллекта наибольшую трудность.

Знание особенностей решения задач умственно отсталыми уча щимися помогает учителю избрать наиболее целесообразные пути, методы и приемы преодоления трудностей.

В процессе обучения решению задач следует избегать натаски вания в решении задач определенного вида, надо учить сознател:, ному подходу к решению задач, учить ориентироваться в опреде ленной жизненной ситуации, описанной в задаче, учить осознан ному выделению данных и искомого задачи, установлению взаимо связи между ними, осознанному выбору действий.

Сознательному подходу к решению любой задачи умственно отсталых школьников необходимо обучать последовательно и тер­пеливо, формируя у них определенные умственные действия.

^И методике работы над любой арифметической задачей можно выделить следующие этапы: 1) работа над содержанием задачи; 2) поиск решения задачи; 3) решение задачи; 4) формулировка ответа; 5) проверка решения задачи; 6) последующая работа над решенной задачей.

/

Работа над содержанием задачи

Большое внимание следует уделять работе над содержанием задачи, т. е. над осмыслением ситуации, изложенной в задаче, установлением зависимости между данными, а также между дан­ными и искомым. Последовательность работы над усвоением со-346


держания задачи: а) разбор непонятных слов или выражений, которые встретятся в тексте задачи; б) чтение текста задачи учителем и учащимися; в) запись условия задачи; г) повторение задачи по вопросам; д) воспроизведение одним из учащихся пол­ного текста задачи.

Работа над отдельными словами и выражениями должна вес­тись не тогда, когда учитель знакомит учащихся с содержанием задачи, а раньше, до предъявления задачи, иначе словарная ра­бота разрушает структуру задачи, уводит учащихся от понима­ния арифметического содержания задачи, зависимости между

данными.

( Текст задачи первоначально рассказывает или читает учитель, 1 а начиная со 2-го класса его могут читать и ученики по учебнику или по записи на доске. Читать задачу нужно выразительно, вы­деляя голосом математические выражения, главный вопрос зада­чи, делая логические ударения на тех предложениях или сочета­ниях слов, которые прямо указывают на определенное действие (например, разложили поровну в две вазы, купили 3 тетради по 12 р. за каждую). Между условием задачи и вопросом следует сделать паузу, если вопрос стоит в конце задачи.

Выразительному чтению текста задачи следует учить учеников. Нужно помнить, что школьники с нарушением интеллекта, если их этому специально не учить, не могут самостоятельно правиль­но прочитать задачу, не могут расставить логические ударения, даже выделить вопрос задачи, если он стоит в начале или середи­не задачи.

Восприятие текста задачи только на слух на первых порах невозможно для школьников с нарушением интеллекта, они вос­принимают нередко только фрагменты задачи, с трудом вычленя­ют числовые данные. При первом чтении они в основном запоми­нают лишь повествовательную часть задачи. Все это свидетельст­вует о необходимости при восприятии текста задачи использовать не только слуховые, но и зрительные, а если возможно, то и кинестезические анализаторы.

Задачу следует иллюстрировать. Для иллюстрации задач в 1—2-х
классах учителя прибегают к предметной иллюстрации, используя
с этой целью предметы окружающей действительности, ученичес­
кие принадлежности, природный материал, игрушки, а затем и
изображения этих предметов в виде трафаретов, которые демон­
стрируются с помощью наборных полотен, фланелеграфа, магнит-
12*




ных досок, песочного ящика, ТОО и т. д. Широко используются для иллюстрации задачи плакаты, рисунки (рис. 30).

Сколько всего рыбок?

Рис. 30

Если в 1-м классе текст задачи иллюстрируется с помощью предметов или рисунков, то в конце 1-го и во 2-м классе надо учить учащихся заменять элементы предметных множеств, о которых го­ворится в задаче, их символами, при этом сохраняя равночислен-ность множеств. Например, если в задаче речь идет о деревьях, то рисунок дерева заменяют палочки. Например, содержание задачи: «Дети посадили в одном ряду 5 дубков, а во втором — на 2 дубка больше. Сколько всего деревьев посадили дети?» — учащиеся могут зарисовать так, как показано на рисунке 31.

Символами тетрадей могут служить квадраты или прямоуголь­ники, огурцов — овалы, яблок — круги и т. д.

Выполняя рисунок или иллюстрируя задачу предметами, учащие­ся глубже проникают в предметно-действенную ситуацию задачи и легче устанавливают зависимость между данными, а также между данными и искомыми.

Естественно, что не каждую сло-

11111 весно сформулированную задачу

11111 \ Онужно иллюстрировать или «опред-

мечивать». Но, помня об особеннос­
тях мышления умственно отсталых
школьников, к этому приему нужно
время от времени прибегать, не
Рис 31 только решая новые для учащихся

задачи, но и повторяя решение уже


известных им видов задач. Причем использовать этот прием, как показывает опыт, следует не только в младших, но и в старших классах школы VIII вида, например при решении задач на краткое сравнение, приведение к единице, на нахождение части от числа и т. д. Постепенно учащиеся переходят от «опредмечивания» со­держания задачи к «воображению» ими предметной ситуации. В этом случае учитель предлагает «вообразить» себе содержание задачи, представить, как это происходит в жизни с реальными объектами, описанными в задаче. Тем учащимся, которые еще не готовы к этому, можно разрешить продолжать использовать пред­меты, рисунок.

Наряду с конкретизацией содержания задачи с помощью пред­метов, трафаретов и рисунков в практике работы учителей школы VIII вида широкое распространение получили следующие формы записи содержания задачи:

1.Сокращенная форма записи, при которой из текста задачи
выписывают числовые данные и только те слова и выражения,
которые необходимы для понимания логического смысла задачи.
Вопрос задачи записывается полностью. Например: «В вазе стоял
букет цветов из ромашек и васильков. В букете было 7 ромашек,
а васильков на 5 штук больше. Сколько всего цветов в букете?»
Сокращенная запись: «Ромашек 7 штук, васильков на 5 штук
больше. Сколько всего цветов?»

2. Сокращенно-структурная форма записи, при которой каждая
логическая часть задачи записывается с новой строки. Вопрос
задачи записывается или внизу, или сбоку. Текст задачи принима­
ет наглядно-воспринимаемую форму. Например:

Сколько всего цветов?

Ромашек7 штук. Васильков на 5 штук больше.

3. Схематическая форма записи. Это запись содержания задачи
в виде схемы (рис. 32). В схеме желательно сохранить пропорции,
соответствующие числовым данным. «В одном ящике 17 кг поми­
доров, а в другом на 5 кг больше. Сколько килограммов помидо­
ров в двух ящиках?»

4. Графическая форма записи. Это запись содержания задачи в
виде чертежа, диаграммы. Удобнее всего в графической форме
записывать задачи на движение (рис. 33).

5. Опыт показывает, что пониманию зависимости между число­
выми данными, а также между данными и искомыми в некоторых
задачах способствует не конкретизация условия, а наоборот, аб-


страгирование от конкретной ситуации. К таким задачам относят­ся задачи на пропорциональную зависимость (на соотношение ско­рости, времени и пути; цены, количества и стоимости и др.).

Цена Количество Стоимость
Одинако­вая 3 л 8 л 7 р. 50 к. X

Для записи таких задач лучше всего использовать таблицу, в гра­фы которой записываются число­вые данные задачи. Например: «За 3 литра молока уплатили 7 р. 50 к. Сколько стоят 8 л молока?»

В данном случае абстрагирование от предметного содержания задачи помогает учащимся лучше осмыслить зависимость между данными и искомой величиной.

Указанным формам записи содержания задач умственно отста­лых школьников необходимо учить так, чтобы они самостоятельно могли выбрать наиболее рациональную форму и записать задачу. Овладевают этими формами записи учащиеся медленно. Учителю необходимо соблюдать систему, поэтапность в обучении:

1.После ознакомления учащихся с текстом задачи учитель сам
дает краткую запись содержания задачи на доске, учащиеся запи­
сывают ее одновременно с учителем в тетрадь.

2. После разбора условия задачи краткую запись на доске
делает ученик под руководством учителя, при активном участии
учащихся всего класса. С этой целью учитель просит ученика
прочитать фрагмент задачи и спрашивает, как можно записать эту
часть задачи кратко, зарисовать или начертить.


3. Вызванный к доске ученик самостоятельно читает задачу и
дает ее краткую запись под контролем учителя. Учащиеся также
выполняют это задание самостоятельно и сверяют свою запись с
записью на доске.

4. Самостоятельная запись условия задачи учащимися.
Краткая форма записи задачи должна быть составлена так,

чтобы ученик мог по ней воспроизвести условие задачи или соста­вить задачу.

Чтобы учащиеся научились записывать текст задачи кратко, нужно требовать от них по полному тексту задачи из учебника составить краткую запись задачи, не решая ее. Надо учить уча­щихся выбирать рациональную форму краткой записи, т. е. такую, в которой наиболее отчетливо вырисовывалась бы зависимость между данными задачи, а также между данными и искомым.

Содержание каждой ли арифметической задачи следует запи­сывать учащимся? Безусловно, нет. Если предметная ситуация ясна, а с аналогичной математической зависимостью учащиеся неоднократно встречались и в своей практической деятельности, и при решении словесно сформулированных задач, то запись задачи в той или иной форме не нужна. Это сократит время на ее решение.

Следовательно, учить различным формам записи содержания задачи учащихся необходимо, использование же форм записи будет зависеть от имеющегося опыта учащихся, от степени труд­ности для них понимания предметной ситуации задачи и зависи­мости между данными и искомым.

Лучшему восприятию и пониманию задачи способствует ее повторение по вопросам.

(Форма вопросов при повторении задач меняется: сначала учи­тель задает конкретные вопросы, а затем обобщенные. Например:

«В коробке было 3 красных карандаша. Вова положил туда еще 2 зеленых карандаша. Сколько всего карандашей в коробке?»

Повторение задачи по вопросам: «О чем эта задача? Какого цвета карандаши? Сколько красных карандашей лежало в короб­ке? Покажите цифрой. Сколько зеленых карандашей положили в коробку? Покажите цифрой. Что нужно узнать в задаче или какой вопрос задачи?» ~?

Другая форма вопросов, с помощью которых выясняется значе­ние каждого числового данного: «Что показывает число 3 в зада­че? Что показывает число 2 в задаче? Какой вопрос задачи?»


Наконец, можно поставить к тексту задачи и такие вопроа «Что известно в задаче? Что неизвестно в задаче? Что нужк узнать?» Для ответа на эти вопросы учащиеся после чтения зад| чи должны самостоятельно вычленить из текста задачи известны! и неизвестные данные. Безусловно, это требует уже определенно] го опыта в анализе содержания задачи.

Поиск решения задачи

На этом этапе учащиеся, отвечая на вопросы учителя, постав' ленные в определенной логической последовательности, подводят ся к составлению плана решения задач и выбору действий. Наме­чаются план и последовательность действий — это следующий этап работы над задачей.

В тексте многих задач имеются слова: всего, осталось, боль-, ше, меньше, которые указывают на выбор арифметического деист-!, вия, но опираться только на них при выборе действия нельзя, так как в отрыве от контекста они могут натолкнуть ученика на ошибочный выбор действия. Исключать эти опорные слова из задач не следует, так как они отражают определенную жизненную ситуацию, но нельзя акцентировать на них внимание учащихся вне контекста задачи. Например, нельзя говорить ученику, что «если в задаче есть слова всего, стало, то надо складывать; если есть в задаче слово осталось, то надо вычитать».

Выбор действия при решении задачи определяется той зависи­мостью, которая имеется между данными и искомыми в задаче. Зависимость эта правильно может быть понята в том случае, если ученики поняли жизненно-практическую ситуацию задачи и могут перевести зависимость между предметами и величинами на «язык математики», т. е. правильно выразить ее через действия над числами. С этой целью учитель проводит беседу с учащимися, которая называется разбором задачи. В беседе устанавливается зависимость между данными и искомым. При разборе содержания задачи нового вида учитель ставит вопросы так, чтобы подвести учащихся к правильному и осознанному выбору действия.

Разбор задачи можно начинать с числовых данных (сверху) и вести учащихся к главному вопросу задачи. К двум числовым данным, которые вычленяются из условия задачи, подбирается вопрос. Например: «Школьники на пришкольном участке посади­ли 17 грядок помидоров, по 30 штук на каждой, и 20 грядок капусты, по 25 штук на каждой. Сколько всего штук рассады посадили?»


Беседу учитель проводит так: «Известно, что посадили 17 гря­док помидоров, по 30 штук на каждой. Что можно узнать по этим данным? Каким действием? (Умножением. Надо 30 шт. Х17.) По­чему?

Известно также, что посадили 20 грядок капусты, по 25 штук на каждой. Что можно узнать по этим данным? (Сколько штук расса-I ды капусты посадили?) Каким действием? (Умножением. Нужно | 25 шт.х20.) Почему? Теперь известно, сколько посадили помидо­ров и капусты отдельно. Что отсюда можно узнать? (Сколько всего штук рассады посадили?) Каким действием это можно узнать? (Сложением.) Почему? Что нужно было узнать в задаче? Ответили ли мы на главный вопрос задачи? Решили ли мы задачу?»

Разбор задачи можно начинать от главного вопроса задачи (снизу). При этом к вопросу учащиеся должны подобрать 2 числа. Беседу можно построить так: «Можно ли сразу ответить на во­прос задачи? Почему нет? Какие данные нужны для ответа на главный вопрос? Каких данных недостает для ответа на главный вопрос задачи? Можно ли узнать, сколько штук рассады помидо­ров посадили? Что для этого надо знать? Есть ли эти числа в задаче? Каким действием можно узнать, сколько штук рассады капусты посадили? Почему? Что для этого надо знать? Есть ли эти числа в задаче? Каким действием это можно узнать? Почему? Можно ли теперь ответить на главный вопрос задачи? Каким действием? Почему? Решили ли задачу? Почему?»

В младших классах школы VIII вида при разборе задачи рас­суждения чаще всего проводятся от числовых данных к вопросу задачи, так как учащимся легче к выделенным числовым данным поставить вопрос, чем подобрать два числа (из них могут быть оба числа или одно неизвестны) к вопросу задачи. Однако, начиная с 3-го класса, следует проводить рассуждения от главного вопроса задачи, так как такой ход рассуждений более целенаправлен на составление плана решения в целом (а не на выделение одного действия, как это происходит при первом способе разбора — от данных к вопросу задачи).

При разборе уже знакомых учащимся задач не следует прибе­гать к многословным рассуждениям. Иногда достаточно поставить перед учащимися один-два узловых вопроса, чтобы путь решения задачи был ученикам ясен. Например:


«С пришкольного участка учащиеся собрали в первый д| 120 кг яблок, во второй день на 35 кг меньше, а в третий день 71.яблок. Сколько килограммов яблок собрали ученики за три дня]

Учитель может поставить только узловые вопросы перед сост лением плана решения и определением последовательности вий. Например: «Что нужно узнать в задаче? Все ли данные у ш есть, чтобы узнать, сколько килограммов яблок собрали ученики м три дня? Какого данного не хватает? Можно ли из условия задачи определить, сколько килограммов яблок собрали во второй день? 11 > чему? Во сколько действий эта задача? Какое первое действие? 1Ь> чему вычитание? Какое второе действие? Почему сложение? Сколь ко слагаемых во втором действии? Почему складываем 3 числа? Н.1 звать эти слагаемые. Какое из них неизвестно?»

Решение задачи

Опираясь на предыдущий этап, в процессе которого учащиеся осуществляли поиск решения задачи, они готовы устно сформули­ровать вопросы задачи и назвать действия.

Учитель спрашивает: «Во сколько действий задача? Какой первый вопрос? Каким действием можно ответить на этот вопрос?» И т. д.

Далее устно составляется план и намечается последователь­ность действий. «Итак, — спрашивает учитель, — какой первый вопрос? Какое действие? Какой второй вопрос?» И т. д. После этого учащимся предлагается записать решение.

Запись решения задач

В 1-м классе в начале учебного года учащиеся еще не знают букв, не умеют их писать, поэтому решение задачи записывается соответствующим арифметическим действием без наименований. Вместо букв учащиеся около чисел могут нарисовать предмет: яблоко, мяч, палочку и т. д.

Действие записывается в середине строки, чтобы отличить его от записи примера. При этом учитель учит учащихся давать крат­кое пояснение к выполняемому действию (устно). По мере изуче­ния букв учащихся учат записывать решение задачи с наименова­нием. Начиная со 2-го класса вводится запись решения задач с пояснением. Например: «С аэродрома вылетело сначала 7 самоле­тов, а потом еще 5 самолетов. Сколько всего самолетов вылетело с аэродрома?»

Решение этой задачи записывается так:

7 с.+ 5 с. = 12 с. (вылетело с аэродрома) 354


При записи сложных задач могут использоваться следующие

формы записи:

а) запись арифметических действий и ответа задачи;

б) запись решения с пояснением того, что найдено в результа­
те каждого действия;

в) запись решения с вопросами (вопросы и действия чередуют­
ся). В конце записывается ответ;

г) запись сначала только плана решения, затем соответствую-
I тих действий или, наоборот, запись сначала действий, а затем

плана решения задачи. В конце записывается ответ.

На примере одной задачи (см. текст на с. 354) рассмотрим все формы записи решения задачи.

а) 1) 120 кг-35 кг=85 кг

2) 120 кг+85 кг+78 кг=283 кг

Ответ. 283 кг яблок собрано за три дня.

б) 1) 120 кг—35 кг=85 кг яблок собрано во второй день.

2) 120 кг+85 кг+78 кг=283 кг яблок собрано за три дня.

в) 1) Сколько килограммов яблок собрано во второй день?

120 кг-35 кг=85 кг 2) Сколько килограммов яблок собрано за три дня?

120 кг+85 кг+78 кг=283 кг Ответ. За три дня собрано 283 кг яблок.

План

1.Сколько килограммов яблок собрано во второй день?

2. Сколько килограммов яблок собрано за три дня?

Решение

1) 120 кг-35 кг=85 кг

2) 120 кг+85 кг+78 кг=283 кг

Ответ. За три дня собрано 283 кг яблок.

Формулировка ответа

Форма ответа может быть краткой и полной. Например, крат­кая форма ответа: 283 кг или 283 кг яблок; полная форма ответа:


283 кг яблок было собрано за три дня. За три дня было собран^ 283 кг яблок.

Проверка решения задачи

Так как функция контроля у школьников с нарушением лекта ослаблена, то проверка решения задач имеет не толькС образовательное, но и коррекционное значение.

В младших классах необходимо:

1.Проверять словесно сформулированные задачи, производи!
действия над предметами, если, конечно, это возможно. Напри­
мер: «У ученика было 15 р. Он купил 5 тетрадей по 2 р. Сколько
денег у него осталось?» После решения задачи ученик берет по
2 р. 5 раз и считает, сколько всего денег. Потом из 15р. вычита­
ет 10 р., получается 5 р.

2. Проверять реальность ответа (соответствие его жизненной
действительности).

3. Проверять соответствие ответа условию и вопросу задачи.
(О чем спрашивается в задаче? Получили ли ответ на вопрос
задачи?)

Проверка решения задачи другим способом ее решения воз­можна с 4-го класса.

Опыт показывает, что учащиеся школы VIII вида могут на­учиться сознательно проверять те задачи, в условиях которых дана сумма, а в результате конечного и промежуточных действий отыскиваются компоненты суммы, т. е. слагаемые. Например: «На ремонт школы израсходовано 3500 р. Из них 2270 р. израсходова­но на побелку потолков и окраску стен, 458 р. — на ремонт электропроводки. Остальные деньги израсходованы на ремонт ме­бели. Сколько денег израсходовано на ремонт мебели?» Для про­верки этой задачи учащиеся складывают три слагаемых и получа­ют сумму, израсходованную на ремонт школы, т. е. 3500 р. (цены в задаче условные).

Для осуществления проверки задачи очень полезна прикидка ответа до решения задачи.

Для контроля правильности решения задачи используются и некоторые элементы программированного контроля. Например, учитель пишет на доске ответы конечного и промежуточных дей­ствий, только не в том порядке, который необходим при решении задачи; учащиеся (при самостоятельном решении) сверяют ответы промежуточных действий и «запрограммированные» ответы. Этот 356


прием очень полезен тем, что ученик сразу получает подкрепле­ние правильности или, наоборот, ошибочности своих действий. При ошибочности решения он ищет новые пути решения.


Эта страница нарушает авторские права

allrefrs.ru - 2018 год. Все права принадлежат их авторам!