Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






ЧАСТЬ ТРЕТЬЯ. ОТ БЫТИЯ К СТАНОВЛЕНИЮ



Ныне мы твердо знаем, что живем в мире, где сосуще­ствуют в неразрывной связи различные времена и иско­паемые различных эпох.

Теперь перед нами возникает новый вопрос. Мы уже говорили о том, что жизнь стала казаться столь же «естественной, как свободно падающее тело». Что обще­го между естественным процессом самоорганизации и свободно падающим телом? Какая связь может суще­ствовать между динамикой, наукой о силах и траекто­риях, и наукой о сложности и становлении, наукой о жизненных процессах и о естественной эволюции, частью которой они являются? В конце XIX в. необратимость связывали с трением, вязкостью и теплопроводностью. Необратимость была первопричиной потерь и непроиз­водительных расходов энергии. Тогда, к началу XIX в., необратимость еще можно было приписывать неполноте наших знаний, несовершенству наших машин и утверж­дать, будто природа в основе своей обратима. Теперь это безвозвратно ушло в прошлое: ныне даже физика говорит нам, что необратимые процессы играют конст­руктивную и неоценимую по значимости роль.

Тут мы и подходим к вопросу, уклониться от которо­го более невозможно. Как соотносятся между собой но­вая наука о сложности и наука о простом, элементар­ном поведении? Какая связь существует между столь противоположными взглядами на природу? Не означает ли все это, что существуют две теории, две истины для одного мира? Но как такое возможно?

В определенном смысле мы возвращаемся к самым истокам современной науки. Теперь, как и во времена Ньютона, сошлись лицом к лицу две науки: наука о гравитации, описывающая подчиненную законам вне­временную природу, и наука об огне, химия. Ныне мы понимаем, почему первый синтез, достигнутый наукой, ньютоновский синтез, не мог быть полным: описываемые динамикой силы взаимодействия не могут объяснить сложное и необратимое поведение материи. Ignis mutat res— огонь движет вещами. Согласно этому древнему высказыванию, химические структуры — творение огня, результат необратимых процессов. Как преодолеть брешь между бытием и становлением — двумя противо­речащими друг другу понятиями, одинаково необходи­мыми для достижения согласованного описания того странного мира, в котором мы живем?

 

 

Часть третья. От бытия к становлению

Глава 7. ПЕРЕОТКРЫТИЕ ВРЕМЕНИ

Смещение акцента

Уайтхед некогда писал о том, что «столкновение теорий — не бедствие, а благо, ибо открывает новые перспективы»1. Если это утверждение верно, то в исто­рии науки можно указать считанное число случаев, ког­да новая перспектива была столь же многообещающей, как и та, которая открылась при непосредственном столкновении двух миров: мира динамики и мира тер­модинамики.



Ньютоновская наука была вершиной, завершающим синтезом, увенчавшим столетия экспериментирования и теоретических исследований, происходивших в различ­ных направлениях, но метивших в одну точку. То же можно было бы утверждать и относительно термодина­мики. Рост науки не имеет ничего общего с равномер­ным развертыванием научных дисциплин, каждаяиз которых в свою очередь подразделяется на все боль­шее число водонепроницаемых отсеков. Наоборот, кон­вергенция различных проблем и точек зрения способ­ствует разгерметизации образовавшихся отсеков и за­кутков и эффективному «перемешиванию» научной куль­туры. Поворотные пункты в развитии науки приводят к последствиям, выходящим за рамки чистой науки и оказывающим влияние на всю интеллектуальную среду. Верно и обратное: глобальные проблемы часто были источниками вдохновения в науке.

Столкновение теорий, конфликт между бытием и становлением свидетельствуют о том, что новый пово­ротный пункт уже достигнут и возникла настоятельная необходимость в новом синтезе. Такой синтез обретает


свою форму в наше время, столь же неожиданную, как и все предыдущие синтезы. Мы снова являемся свиде­телями замечательной конвергенции исследований, каж­дое из которых вносит свой вклад в выяснение природы трудностей, присущих ньютоновской концепции науч­ной теории.

Ньютоновская наука претендовала на создание кар­тины мира, которая была бы универсальной, детерми­нистической и объективной, поскольку не содержала ссылки на наблюдателя, полной, поскольку достигну­тый уровень описания позволял избежать «оков» вре­мени.



Упомянув о времени, мы подходим к самому суще­ству проблемы. Что такое время? Следует ли нам при­нять ставшее традиционным после Канта противопо­ставление статического времени классической физики субъективно переживаемому нами времени? Вот что пишет об этом Карнап:

«Эйнштейн как-то заметил, что его серьезно беспо­коит проблема «теперь». Он пояснил, что ощущение настоящего, «теперь», означает для человека нечто су­щественно отличное от прошлого и будущего, но это важное отличие не возникает и не может возникнуть в физике. Признание в том, что наука бессильна по­знать это ощущение, было для Эйнштейна болезнен­ным, но неизбежным. Я заметил, что все происходя­щее объективно может быть описано наукой. С одной стороны, описанием временной последовательности со­бытий занимается физика, с другой стороны, особенно­сти восприятия человеком времени, в том числе различ­ное отношение человека к прошлому, настоящему и бу­дущему, может быть описано и (в принципе) объясне­но психологией. Но Эйнштейн, по-видимому, считал, что эти научные описания не могут удовлетворить на­ши человеческие потребности и что с «теперь» связано нечто существенное, лежащее за пределами науки»2.

Интересно отметить, что Бергсон, избравший в опре­деленном смысле иной путь, также пришел к дуали­стическому заключению (см. гл. 3). Подобно Эйнштей­ну, Бергсон начал с субъективного времени и, отправ­ляясь от него, двинулся к времени в природе, време­ни, объективированному физикой. Но, с точки зрения Бергсона, такая объективизация лишила время прочной основы. Внутреннее экзистенциальное время утратило


при переходе к объективированному времени свои ка­чественные отличительные свойства. По этой причине Бергсон ввел различие между физическим временем и длительностью — понятием, относящимся к экзистенци­альному времени.

Но на этом история не кончается. Как заметил Дж. Т. Фрезер, «последовавшее разделение на время ощущаемое и время понимаемое является клеймом на­учно-промышленной цивилизации, своего рода коллек­тивной шизофренией»3. Как мы уже отмечали, там, где классическая наука подчеркивала незыблемость и по­стоянство, мы обнаруживаем изменение и эволюцию. При взгляде на небо мы видим не траектории, некогда восхищавшие Канта ничуть не меньше, чем сам пре­бывающий в нем моральный закон, а некие странные объекты: квазары, пульсары, взрывающиеся и разры­вающиеся на части галактики, звезды, коллапсирующие, как нам говорят, в «черные дыры», которые без­возвратно поглощают все, что в них попадает.

Время проникло не только в биологию, геологию и социальные науки, но и на те два уровня, из которых его традиционно исключали: микроскопический и кос­мический. Не только жизнь, но и Вселенная в целом имеет историю, и это обстоятельство влечет за собой важные следствия.

Первая теоретическая работа, в которой космологи­ческая модель рассматривалась с точки зрения общей теории относительности, была опубликована Эйнштей­ном в 1917 г. В ней Эйнштейн нарисовал статическую, безвременную картину мира Спинозы, своего рода ми­росозерцание в переводе на язык физики. И тогда слу­чилось неожиданное: сразу же после выхода в свет работы Эйнштейна стало ясно, что, помимо найденных им стационарных решений, эйнштейновские уравнения допускают и другие нестационарные (т. е. зависящие от времени) решения. Этим открытием мы обязаны со­ветскому физику А. А. Фридману и бельгийцу Ж. Леметру. В то же время Хаббл и его сотрудники, занима­ясь изучением движения галактик, показали, что ско­рость дальних галактик пропорциональна расстоянию до них от Земли. В рамках теории расширяющейся Вселенной, основы которой были заложены Фридманом и Леметром, закон Хаббла был очевиден. Тем не менее на протяжении многих лет физики всячески сопротив-


лялись принятию «исторического» описания эволюции Вселенной. Сам Эйнштейн относился к нему с боль­шой осторожностью. Леметр часто рассказывал, что, когда он пытался обсуждать с Эйнштейном возмож­ность более точного задания начального состояния Все­ленной в надежде найти объяснение космических лу­чей, Эйнштейн не проявил никакого интереса.

Ныне мы располагаем новыми сведениями о знаме­нитом реликтовом излучении — «свете», испущенном при взрыве сверхплотного файербола, с которого началась наша Вселенная. По иронии истории, Эйнштейн (в известной мере против собственной воли) стал Дарвином физики. Дарвин учил, что человек составляет неотъемлемую часть биологической эволюции; и Эйн­штейн учил, что человек неразрывными узами связан с эволюцией Вселенной. Идеи Эйнштейна привели его к открытию «нового континента», и это открытие было для него столь же неожиданным, как открытие Амери­ки для Колумба. Подобно многим физикам своего по­коления, Эйнштейн исходил в своей деятельности из глубокого убеждения в существовании в природе фун­даментального простого уровня. Однако ныне этот уро­вень становится все менее доступным эксперименту. Единственные объекты, поведение которых действи­тельно «просто», существуют в нашем мире на макро­скопическом уровне. Классическая наука тщательно выбирала объекты изучения именно на этом промежу­точном уровне. Первые объекты, выделенные Ньюто­ном, действительно были простыми; свободно падаю­щие тела, маятник, движение планет. Однако, как мы знаем теперь, эта простота отнюдь не является отличи­тельной особенностью фундаментального: она не может быть приписана остальному миру.

Достаточно ли этого? Мы знаем ныне, что устойчи­вость и простота являются скорее исключением, чем правилом. Следует ли просто отбросить претендующие на всеобщность тоталитарные притязания концептуали­зации, применимые в действительности лишь к простым и устойчивым объектам? Нужно ли проявлять столь большую заботу о том, чтобы согласовать дина­мику и термодинамику?

Не следует забывать слова Уайтхеда, справедли­вость которых непрестанно подтверждается историей науки: столкновение теорий не бедствие, а благо ибо


открывает новые перспективы. Различные авторы доволь­но часто высказывали мысль о том, что мы из практических соображений игнорируем те или иные проблемы: по­скольку те основаны на трудно реализуемых идеализациях. В начале XX в. некоторые физики предлагали от­казаться от детерминизма на том основании, что он недостижим в реальном опыте4. Действительно, мы уже говорили о том, что точные положения и скорости мо­лекул в большой системе никогда нельзя считать из­вестными. Поэтому точно предсказать будущую эволю­цию системы невозможно. Впоследствии Бриллюэн по­пытался подорвать детерминизм, апеллируя к истине на уровне здравого смысла. Точное предсказание, рассуждал он, требует точного знания начальных усло­вий, а за это знание нужно платить. За точное предска­зание, необходимое для того, чтобы детерминизм «ра­ботал», необходимо платить бесконечно большую цену.

Подобные возражения при всей их разумности не оказывают особого влияния на концептуальный мир ди­намики. Не проливают они новый свет и на реальность. Кроме того, усовершенствования в области технологии могут все больше приближать нас к идеализации, тре­буемой классической динамикой.

В отличие от таких возражений доказательства «не­возможности» имеют фундаментальные значения. Каж­дое из них открывает какую-то неожиданную внутрен­нюю структуру реальности, обрекающую на провал чи­сто умозрительные построения. Такие открытия исклю­чают возможность проведения операции, ранее считав­шейся (по крайней мере в принципе) возможной. «Ни один двигатель не может иметь коэффициент полезно­го действия, который бы превышал единицу», «ни один тепловой двигатель не может производить полезную ра­боту, если он не находится в контакте с двумя источни­ками (нагревателем и холодильником)», — примеры двух утверждений о невозможности, которые привели к глубокой перестройке системы понятий.

В основе термодинамики, теории относительности и квантовой механики лежат открытия невозможности, установление пределов амбициозных притязаний клас­сической физики. Эти открытия ознаменовали в свое время конец целых направлений в естествознании, до­стигших своих пределов. Ныне они предстают перед на­ми в ином свете — не как конец, а как начало, как но-


вая, открывающаяся перспектива. В гл. 9 мы увидим, что второе начало термодинамики выражает «невоз­можность» даже на микроскопическом уровне, но и здесь эта недавно открытая невозможность становится исходным пунктом для возникновения новых понятий.

Конец универсальности

Научное описание должно соответствовать источникам, доступным наблюдателю, принадлежащему тому миру, который он описывает, а не существу, созерцаю­щему наш мир «извне». Таково одно из фундаментальных требований теории относительности. Она устанав­ливает предел скорости распространения сигнала, ко­торый не может быть превзойден ни одним наблюдате­лем. Скорость света с в вакууме (с=300 000 км/с) — предельная скорость распространения всех сигналов. Эта предельная скорость играет весьма важную роль:

она ограничивает ту область пространства, которая мо­жет влиять на точку нахождения наблюдателя.

В ньютоновской физике нет универсальных постоян­ных. Именно поэтому она претендует на универсаль­ность, на применимость независимо от масштаба объ­ектов: движение атомов, планет и небесных светил под­чиняется единому закону.

Открытие универсальных постоянных произвело ко­ренной переворот в бытующих взглядах. Используя скорость света как эталон для сравнения, физика ус­тановила различие между малыми и большими скоро­стями (последние приближаются к скорости света).

Аналогичным образом постоянная Планка h позво­лила установить естественную шкалу масс объектов. Атом уже не мог более считаться крохотной планетной системой: электроны принадлежат к иному масштабу масс, чем планеты и все тяжелые медленно движущие­ся макроскопические объекты, включая нас самих.

Универсальные постоянные не только разрушили однородность Вселенной введением физических масшта­бов, позволяющих устанавливать качественные разли­чия между отдельными типами поведения, но и приве­ли к новой концепции объективности. Ни один наблю­датель не может передавать сигналы со скоростью

большей, чем скорость света в вакууме. Исходя из


этого постулата, Эйнштейн пришел к весьма замеча­тельному выводу: мы не можем более определить аб­солютную одновременность двух пространственно раз­деленных событий; одновременность может быть опре­делена только относительно данной системы отсчета. Подробное изложение теории относительности увело бы нас слишком далеко от основной темы, поэтому мы ог­раничимся лишь одним замечанием. Законы Ньютона отнюдь не предполагают, что наблюдатель — «физиче­ское существо». Объективность описания определяется как отсутствие всякого упоминания об авторе описания. Для «нефизических» разумных существ, способных об­мениваться сигналами, распространяющимися с беско­нечно большой скоростью, теория относительности бы­ла бы неверна. То обстоятельство, что теория относи­тельности основана на ограничении, применимом к фи­зически локализованным наблюдателям, существам, могущим находиться в один момент времени лишь в одном месте, а не всюду сразу, придает физике не­кую «человечность». Это отнюдь не означает, будто физика субъективна, т. е. является результатом наших предпочтений и убеждений. Физика по-прежнему оста­ется во власти внутренних связей, делающих нас частью того физического мира, который мы описываем. Наша физика предполагает, что наблюдатель находится внут­ри наблюдаемого им мира. Наш диалог с природой успешен лишь в том случае, если он ведется внутри природы.


Эта страница нарушает авторские права

allrefrs.ru - 2018 год. Все права принадлежат их авторам!