Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Характеристики центра, структуры распределения



Ряды распределения строятся по большим распределениям совокупности. При этом возникает необходимость получить характеристику всего набора данных с использованием одного обобщающего показателя. Прежде всего, таким показателем. Который характеризует совокупность в целом, отражает типический уровень признака в данной совокупности, является средняя арифметическая величина. Среднее рассчитывается на единицу совокупности, однако характеризует совокупность в целом.

По исходным данным средняя величина рассчитывается по средней арифметической простой; если по вариационному ряду – по средней арифметической взвешенной. В качестве весов – частоты, частости. Если среднее рассчитывается по интервальному ряду, в качестве индивидуальных значений признака используются середины интервала.

Мода (M0) – наиболее часто встречающееся значение признаков совокупности.

Проблема расчета данного показателя связана с интервальным вариационным рядом.

Сначала находится модальный интервал (интервал, которому соответствует максимальная частота).

, где

ХМ0о – нижняя граница модального интервала;

h – величина интервала;

fMo – 1 - частота интервала, предшествующего модальному;

fMo – частота модального интервала;

fMo + 1 - частота интервала, следующего за модальным.

Медианае) – значение признака у единицы, делящей ранжированный ряд пополам.

При определении медианы по ранжированному ряду без группировки

Если число единиц совокупности четное, то значение медианы определяется как среднее арифметическое двух центральных значений.

Если медиана рассчитывается по интервальному вариационному ряду, то сначала находят медианный интервал, а затем по формуле рассчитывается значение медианы.

Медианный интервал – это первый интервал, в который попадает 50% совокупности.

, где

ХМе – нижняя граница медианного интервала;

f’Me-1 – накопленная частота интервала, предшествующего медианному;

fMe – частота медианного интервала;

∑ fi - сумма накопленных частот.

Вопрос выбора показателя центра распределения зависит от типа характеристике, по которой построен ряд распределения, а также от целей исследования.

Если показатель количественный, то могут быть рассчитаны все показатели центра распределения (и средняя величина, и медиана). Тогда выбор показателя зависит от цели исследования и характера изучаемого распределения.

Если распределение соответствует нормальному распределению, то целесообразнее использовать среднюю величину.



Если в распределении наблюдается существенная асимметрия, то следует использовать либо моду, либо медиану, исходя из цели анализа.

При оценке распределений по атрибутивным признакам, средние значения рассчитаны быть не могут. Показатель моды может быть рассчитан по любому атрибутивному признаку, то есть измерен как по номинальной, так и по порядковой шкале.

Медиана как значение показателя у единицы, делящей ранжированный ряд пополам, одновременно является характеристикой структуры распределения. Так как значение медианы характеризует структуру изучаемой совокупности, указывая, что 50% единиц имеют значение признака меньше медианного, и 50% - больше медианного.

Для более детальной характеристики структуры совокупности, используются такие показатели, как квартили, делящие ранжированный ряд на 4 равные части, децили – на 10 равных частей, перцентили – ни 100, и другие.

Возможность расчета тех или иных показателей определяется целью исследования и размером изучаемой совокупности.

Перечисленные показатели по интервальному вариационному ряду рассчитываются аналогично расчету медианы. То есть для расчета первого или нижнего квартиля сначала находят квартильный интервал, а затем значение первого квартиля.

- первый, нижний квартиль.

- третий, верхний квартиль.

Значение Q1 означает, что у 25% единиц совокупности значение показателя меньше квартильного, а у 75% - больше.

Значение Q3: у 25% единиц совокупности значение больше данного.

Межквартильное расстояние Q3 - Q1 характеризует размах вариации в центре распределения. На этом интервале находится 50% единиц изучаемой совкупности.

19.Нормальное распределение: понятие и показатели формы распределения.



 

 

 

 

20. Показатели изменчивости.


Эта страница нарушает авторские права

allrefrs.ru - 2018 год. Все права принадлежат их авторам!